228 research outputs found

    Dynamics of Resistance Development to Imatinib under Increasing Selection Pressure: A Combination of Mathematical Models and In Vitro Data

    Get PDF
    In the last decade, cancer research has been a highly active and rapidly evolving scientific area. The ultimate goal of all efforts is a better understanding of the mechanisms that discriminate malignant from normal cell biology in order to allow the design of molecular targeted treatment strategies. In individual cases of malignant model diseases addicted to a specific, ideally single oncogene, e.g. Chronic myeloid leukemia (CML), specific tyrosine kinase inhibitors (TKI) have indeed been able to convert the disease from a ultimately life-threatening into a chronic disease with individual patients staying in remission even without treatment suggestive of operational cure. These developments have been raising hopes to transfer this concept to other cancer types. Unfortunately, cancer cells tend to develop both primary and secondary resistance to targeted drugs in a substantially higher frequency often leading to a failure of treatment clinically. Therefore, a detailed understanding of how cells can bypass targeted inhibition of signaling cascades crucial for malignant growths is necessary. Here, we have performed an in vitro experiment that investigates kinetics and mechanisms underlying resistance development in former drug sensitive cancer cells over time in vitro. We show that the dynamics observed in these experiments can be described by a simple mathematical model. By comparing these experimental data with the mathematical model, important parameters such as mutation rates, cellular fitness and the impact of individual drugs on these processes can be assessed. Excitingly, the experiment and the model suggest two fundamentally different ways of resistance evolution, i.e. acquisition of mutations and phenotype switching, each subject to different parameters. Most importantly, this complementary approach allows to assess the risk of resistance development in the different phases of treatment and thus helps to identify the critical periods where resistance development is most likely to occur

    Combined population dynamics and entropy modelling supports patient stratification in chronic myeloid leukemia

    Get PDF
    Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34+ similarity as a disease progression marker to patientderived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis

    Effects of Bosutinib Treatment on Renal Function in Patients With Philadelphia Chromosome-Positive Leukemias

    Get PDF
    Abstract Background The purpose of the study was to assess renal function in patients with Philadelphia chromosome-positive leukemias receiving bosutinib or imatinib. Patients and Methods Patients received first-line bosutinib (n = 248) or imatinib (n = 251; phase III trial), or second-line or later bosutinib (phase I/II trial; n = 570). Adverse events (AEs) and changes from baseline in estimated glomerular filtration rate (eGFR) and serum creatinine were assessed. Results Time from the last patient's first dose to data cutoff was ≥ 48 months. Renal AEs were reported in 73/570 patients (13%) receiving second-line or later bosutinib, and in 22/248 (9%) and 16/251 (6%) receiving first-line bosutinib and imatinib, respectively. eGFR in patients receiving bosutinib declined over time with more patients developing Grade ≥ 3b eGFR ( 2 according to the Modification of Diet in Renal Disease method) with second-line or later bosutinib (139/570, 24%) compared with first-line bosutinib (26/248, 10%) and imatinib (25/251, 10%); time to Grade ≥ 3b eGFR was shortest with second-line or later bosutinib. Similar proportions of patients receiving second-line or later bosutinib (74/139, 53%), first-line bosutinib (15/26, 58%), and first-line imatinib (15/25, 60%) improved to ≥ 45 mL/min/1.73 m 2 eGFR as of the last follow-up. In a regression analysis, first-line treatment with bosutinib versus imatinib was not a significant predictor of Grade ≥ 3b eGFR. Conclusion Long-term bosutinib treatment is associated with an apparently reversible decline in renal function with frequency and characteristics similar to renal decline observed with long-term imatinib treatment. Patients with risk factors for Grade ≥ 3b eGFR should be monitored closely

    Abcg2 Overexpression Represents a Novel Mechanism for Acquired Resistance to the Multi-Kinase Inhibitor Danusertib in BCR-ABL-Positive Cells In Vitro

    Get PDF
    The success of Imatinib (IM) therapy in chronic myeloid leukemia (CML) is compromised by the development of IM resistance and by a limited IM effect on hematopoietic stem cells. Danusertib (formerly PHA-739358) is a potent pan-aurora and ABL kinase inhibitor with activity against known BCR-ABL mutations, including T315I. Here, the individual contribution of both signaling pathways to the therapeutic effect of Danusertib as well as mechanisms underlying the development of resistance and, as a consequence, strategies to overcome resistance to Danusertib were investigated. Starting at low concentrations, a dose-dependent inhibition of BCR-ABL activity was observed, whereas inhibition of aurora kinase activity required higher concentrations, pointing to a therapeutic window between the two effects. Interestingly, the emergence of resistant clones during Danusertib exposure in vitro occurred considerably less frequently than with comparable concentrations of IM. In addition, Danusertib-resistant clones had no mutations in BCR-ABL or aurora kinase domains and remained IM-sensitive. Overexpression of Abcg2 efflux transporter was identified and functionally validated as the predominant mechanism of acquired Danusertib resistance in vitro. Finally, the combined treatment with IM and Danusertib significantly reduced the emergence of drug resistance in vitro, raising hope that this drug combination may also achieve more durable disease control in vivo

    Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is a potential tumour suppressor in prostate cancer and is frequently silenced by promoter methylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously reported significant downregulation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) in prostate cancer (PCa) compared to the surrounding benign tissue. UCHL1 plays an important role in ubiquitin system and different cellular processes such as cell proliferation and differentiation. We now show that the underlying mechanism of UCHL1 downregulation in PCa is linked to its promoter hypermethylation. Furthermore, we present evidences that UCHL1 expression can affect the behavior of prostate cancer cells in different ways.</p> <p>Results</p> <p>Methylation specific PCR analysis results showed a highly methylated promoter region for UCHL1 in 90% (18/20) of tumor tissue compared to 15% (3/20) of normal tissues from PCa patients. Pyrosequencing results confirmed a mean methylation of 41.4% in PCa whereas only 8.6% in normal tissues. To conduct functional analysis of UCHL1 in PCa, UCHL1 is overexpressed in LNCaP cells whose UCHL1 expression is normally suppressed by promoter methylation and found that UCHL1 has the ability to decrease the rate of cell proliferation and suppresses anchorage-independent growth of these cells. In further analysis, we found evidence that exogenous expression of UCHL1 suppress LNCaP cells growth probably via p53-mediated inhibition of Akt/PKB phosphorylation and also via accumulation of p27kip1 a cyclin dependant kinase inhibitor of cell cycle regulating proteins. Notably, we also observed that exogenous expression of UCHL1 induced a senescent phenotype that was detected by using the SA-ß-gal assay and might be due to increased p14ARF, p53, p27kip1 and decreased MDM2.</p> <p>Conclusion</p> <p>From these results, we propose that UCHL1 downregulation via promoter hypermethylation plays an important role in various molecular aspects of PCa biology, such as morphological diversification and regulation of proliferation.</p

    ASXL1 mutations predict inferior molecular response to nilotinib treatment in chronic myeloid leukemia

    Get PDF
    Gene mutations independent of BCR::ABL1 have been identified in newly diagnosed patients with chronic myeloid leukemia (CML) in chronic phase, whereby mutations in epigenetic modifier genes were most common. These findings prompted the systematic analysis of prevalence, dynamics, and prognostic significance of such mutations, in a clinically well-characterized patient population of 222 CML patients from the TIGER study (CML-V) by targeted next-generation sequencing covering 54 myeloid leukemia-associated genes. In total, 53/222 CML patients (24%) carried 60 mutations at diagnosis with ASXL1 being most commonly affected (n = 20). To study mutation dynamics, longitudinal deep sequencing analysis of serial samples was performed in 100 patients after 12, 24, and 36 months of therapy. Typical patterns of clonal evolution included eradication, persistence, and emergence of mutated clones. Patients carrying an ASXL1 mutation at diagnosis showed a less favorable molecular response to nilotinib treatment, as a major molecular response (MMR) was achieved less frequently at month 12, 18, and 24 compared to all other patients. Patients with ASXL1 mutations were also younger and more frequently found in the high risk category, suggesting a central role of clonal evolution associated with ASXL1 mutations in CML pathogenesis

    Family resilience of families with parental cancer and minor children: a qualitative analysis

    Get PDF
    IntroductionEstimated 50,000 minor children in Germany experience a newly diagnosed cancer in one of their parents every year. Family resilience has proven to be an important concept against life crises. However, little research exists regarding family resilience in the context of parental cancer with minor children. Based on the “Family Resilience Framework,” the aim of the study is to investigate the processes of family resilience of affected families. In addition, we explore which combinations of promoting family resilience processes can be characterized.MethodsAs part of the mixed-method quasi-experimental interventional study “F-SCOUT,” a qualitative content analysis was used to analyze the documentation of the “Family-Scouts” (a fixed contact person who advises, accompanies, and supports the families). Documentation was performed by families’ study inclusion (T0), after 3 months (T1) and 9 months (T2) concerning current family situation, organization of everyday life, emotional coping, open communication within the family, and planned tasks.ResultsThe N = 73 families had between one and six children. In 58 (79%) families, the mother had cancer. In the course of the analysis, a category system with 10 main categories and 36 subcategories emerged. Family resilience processes were described to different extents. Combinations of categories promoting family resilience were characterized by the use of social resources, flexibility, economic resources, and open communication.DiscussionThe findings are consistent with existing assumptions about family resilience in terms of the importance of social resources, family cohesion, mutual support, flexibility, open communication, and psychological well-being. In contrast to the findings of previous research, spirituality, and collaborative problem-solving indicate less centrality here. In turn, the findings on economic resources and information-seeking provide a valuable addition to the family resilience literature in the context of parental cancer with minor children.Clinical trial registrationClinicalTrials.gov, identifier NCT04186923

    Does the Constitution Provide More Ballot Access Protection for Presidential Elections Than for U.S. House Elections?

    Get PDF
    Both the U.S. Constitution and The Federalist Papers suggest that voters ought to have more freedom to vote for the candidate of their choice for the U.S. House of Representatives than they do for the President or the U.S. Senate. Yet, strangely, for the last thirty-three years, the U.S. Supreme Court and lower courts have ruled that the Constitution gives voters more freedom to vote for the candidate of their choice in presidential elections than in congressional elections. Also, state legislatures, which have been writing ballot access laws since 1888, have passed laws that make it easier for minor-party and independent candidates to get on the ballot for President than for the U.S. House. As a result, voters in virtually every state invariably have far more choices on their general election ballots for the President than they do for the House. This Article argues that the right of a voter to vote for someone other than a Democrat or a Republican for the House is just as important as a voter’s right to do so for President, and that courts should grant more ballot access protection to minor-party and independent candidates for the House
    corecore